author's copy (Refers to Man'41-5pr'42)
prepar

prepared by J. Lederberg

Biol. Labs., Columbia Univ.

COLCHICINE

1. Introduction Chemistry Pharmacology

2. The C-Mitosis
Plant cytology

Plant cytology Animal cytology

3. The Physiology of the C-Mitosis Similarities to anaesthesia Physical effects Bio-chemical effects

- 4. Allium cepa: the colchicine susceptibility gradient
- 5. General Considerations
- 6. Bibliography

1. Colchicine is an alkaloid present in corms and roots of various Liliaceae, particularly Colchicum autumnale, the meadow saffron. (Klein & Pollauf '29) Although it has never been fully synthesized, the researches of Windaus and others indicate the formula reproduced here: (from Henry '3 '39) It will be observed that the nitrogen is on a side chain and that there is an acetanilide nucleus present. (Note 1) Tuling is publicly attention

Saffron extracts have been used since Byzantine times as an empirical specific for gout, (Rushy et al., '30) Water and uric acid excretion are stimulated. However intestinal inflammation and respiratory depression frequently occur so that this drug is not widely used in modern practice. Temperature plays an important part in determining the toxicity of this drug, warm blooded animals, or frogs kept at a high temperature, having 400 times the sensitivity as cold-blooded. (Funner, ..., '33) Jacobson ('25) reports a specific paralysis of cardiac parasympathetic terminations. Lorthicri finds a modification of the Arneth leucocyte count, a lowered renal threshold for glucose and a decrease of liver glycogen, all indicating an interference with renal mechanisms. Clark & Barnes '40 find

that colchicine poisoning, iodoacetate poisoning, and adrenal-cortical deficiency are all relieved by the administration of salt-water or of cortical extract.

There are also scattered reports in the French litterature of stimulatory effects on parathyroid and testicular tissue.

It is plain that the general pharmacological effects of this drug have not as yet been reconciled in any comprehensive theory on the mechanism of its action!

It is not on the basis of the above-listed properties that Colchicine merits the attention that it receives from biologists today. A number of other effects of this drug have been recorded which are traceable to its effects on ceil-division. The modifications, described below, which Colchicine introduces into cell-division nate been called the C-Mitosis (Levan '36). The early history of its clarification has been reviewed quite adequately by Dermen '40, and Fyre '39, and will not be repeated here. The work of Levan ('38,'39) describes the c-mitosis as follows. The material is the root-meristem of Allium cepa; the concentrations of the drug varying from .0075% to 1%, applied by merely growing the roots in the test solution:

Prophases proceed normally, and polar caps may appear in the earliest stages. As a result the metaphase in a mitaphase wis never oriented, and they chromosomes do not appear on the equatorial plane. Cell Instead they remain scattered about the ,apparently for as long as seven or eight hours. The kinetochore is also somewhat influenced for it does not diquickly and synchronously vide as, it would in the normal rhythm. The length of the chromosome does almost ingth however soon split, and repulsion or some other force spreads the halves out stil لتناسن that x shaped chromosomes appear, the point of juncture being the unsplit Subsequently kinetochore. Eventule Lly this too divides, yielding pairs in a tetraploid #igure Telophasic transformation now ensues, but the disorganization of the enromosomes results in canalized and in polymorphic, pycnotic nuclei. These late

clei are now tetraploid or at any rate, are 2x with respect to the parent lydrounded, nuclei. Thus, haploids can be made to yield homozygous alploids. This process almost almost plane to death was fully of chromosome doubling can be repeated indefinitely. In the reduction-division of the sporocytes (Levan '39) a fundamentally similar pattern applies. In some diplotic mitosis the presence of x-chromosomes and the absence of the spindle are clear diagnostic features that colchicine activity in the home constituted nuclear and the absence of the spindle are

This mechanism of polyploidy depends on the non-function of the spindle and is not to be confused with that induced in the resting phase by hetero-auxin (Levan '39b) nor by that resulting from the absence of new wall-formation by purine alkaloids (Gosselin '40).

Cytological investigations on the effects of colonicine, particularly interesting to geneticists for obvious reasons, have been made on a great number of organisms, plant and animal, some of which are summarized in the following table:

TABLE I

investigations on cytological effects of Colonicine.		
Material	Effect	Reference
Tradescantia, stamen hrs	c-mitosis	Nebel & Ruttle '3
Blestiana & Datura	polypiciay	Blakeslee 37
Mea, Allium, etc root	c-mitosis	Eigsti '38
Allium root	c-mitosis (good illus.)	O'Mara '59
Triticum root	e-mitosis	Beams & King 138
var. rcots	c-mitosis	Shimamura '39
Pinus seeds	mixed polyploidy	Mirov'39
Pteridophyte gam.	polyproidy	Rosendahi '41
Marchantia	polyploidy	Blakeslee '39
Spirogyra	hinucleate	Yamana'41
Saccharomycetes	No Effect	Richards '38
Schizomycetes	No Effect	Walker '40
Review on plant material	Boas &VGistle '39.	
· -		

Review on plant material	Boas & VGistle 139.	
Tissue culture (an.)	arrested metaphase	Ludford '56 Olearkin '37
T.C. human cancer Mouse organs after injection Frog (tadpole) tail epidermis Frog egg Frog egg Rabbit ova Orthopteran testis	arrested metaphase arrested metaphase arrested metaphase arrested cleavage pycnotic nuclei arrested cleavage, tetrapldy giant sperm, differentiatio of cellular elements withou cell division	n

Protosos

No Errect

Beams & Evans '38, 40

Teratological effects, no doubt resulting from the distortion of cleavage nave been reported as follows:

Oryzias (teleost)
Gallus (chick)
Rana (anuran)

Waterman 40 Ancel & Lallemond

various
'stropnosomic'

(anuran) Weish unpub. exogastruise
We have every reason to believe that the 'arrested metaphase of the

we have every reason to believe that the 'arrested metaphase of the zoologists is equivalent to the c-mitosis of the botanists. The inhibition of spindle function is the prime cause.

White colchicine demonstrates c-mitosis with the clearest and great est efficacy, it is by no means the only reagent that will induce polyploidy in the manner described. The French workers, particularly the Gavanuans, Somenet, and Guinochet have described, in a series of papers in the C.R. Soc Bid a great many such compounds, including acenapthen, p-dichlorobenzene, naphhalen and chlore-naphthalene, prenyl-ure thane, emer, chloral hydrate, and others. There is no resolution of this list on the casis of chemical structure. Indeed Ludford 'od linds that slight modifications (demethylation) of the colonicine molecule destroy its c-activity.

In particular, however, the anesthetics are represented in the list, and it has been suggested that colchicine acts as an anesthetic. Into view is dealt with more fully below.

In concordance with the effects on spindle a great number of consistent observations have been made indicating that & physical correlative of the spindle inhibition is a modification of the viscosity ray that of mitosis (Heilbrunn '28). The effect is always a reduction in that viscosity. Wilbur '40 on Arbacia eggs finds that the getation accompanying metaphase is innibited, but that the standard viscosity is unaffected. Beams & King come so a similar conclusion on Triticum seedlings, as does Wada ('40) on living Trades cantia staminal hairs, and Lein '42 on Glycera eggs in hypotomic seawater. T

The causal relations of these phenomena are not revealed, however. That is to say, is the collection effect directly on the cytoplasmic viscosity, or is the diminution of the latter an incidental consequence to a more direct inhibition of the spindle. The supposed common behavior of anesthetics in decreasing viscosity is interesting in this connection. Further progress in this direction is probably waiting for independent progress of research on the nature of the spindle.

Lillie('14,'18) has observed changes in water-permeability and electrical potacity of the cell membrane during sea-uronin egg division. However, no reports appear in the literature with respect to colonicine elects.

Guinochet finds changes in the pH and osmotic pressure or corculatived Triticum securings.(G.,'40):

pH vacuole from 4.8-5.0 to 4.4-4.8 .3 decrease

pH cytopiasm from 5.4 to 5.2 .2 decrease

Osm Pr 'ceil' 7.1 to il.1 Atmos. 55% increase.

The increase in esmotic pressure is a reflection of the very swellen appearance that meristematic cells have after effective treatment with colchicine. The pH change is considered further below.

There is as yet no rationale for colchimene extects here. The problem may however be attacked from a chemical viewpoint. If only in a negative way, the work there has been more truitful.

General considerations on the chemistry of cell-division are discussed in the report 'The Biochemistry of Celt-Division' by the present author, to which reference should be made. If the relationships between activity and metabolism were there indicated to be complex and obscure, the colonicine situation can only emphasize this:

Gal ('38) working on the anesthetic hypothesis tested the ellects of colenicine on the activities of dehydrogenases, and checked the results against unusuant sodium cacoaylate, which has similar cytological effects. The cacodylate had no effect on any of the creis - substrates. Cotchicine had no effect on succinic, glucose or glycogen dehydrogenases, but partially inhibited lactic and citric dehydrogenases. The source, unfortunately, was been muscle and liver, in neither of which c-activity can be demonstrated. However an interesting hypothesis to test would be that the lowering of pH in Guinochet's Triticum is a consequence of the accumulation of lactic and citric acid. This hypothesis is especially interesting in view of Ruhland and Ramshorn's ('38) determinations of the RQ in meristems, and of the presence of acetic dehydrogenases, indicating anaerobic fermentation. This is discussed more completely in the succeeding report.

At any rate, colonicine does not work by blocking oxygen supply at any early stage. The effects of oxygen block are very much different. Brock, Druck-rey, and Herkin ('39) find that colonicine concentrations 500x those required for complete division block in Stongylocentrotus have no effect on the oxygen consumption of these eggs. Patton & Nebel ('39) find that the drug does not affect respiration at all at .0002M, and halves it at .0004M. Both of these concentrations probably are considerably in excess of that required for c-mistosis in their material, excised Zea roots, but no figures are given. The answer to this mechanism, like that for the anesthesic inhibition of other ceri activities is not to be sought in the total respiration or metabolism but to some specific moiety thereof. In spite of these negative conclusions, an enzymatic hypothesis for c-activity remains a promising one, if not the only one that is susceptible to any form of attack.

Other observations on the enzymatic activity of colchicine are mostly negatives. However, Patton & Nebel, op cit, find a depression of proteclysis at a concentration of .COOLM which may be at or not too much above the threshold for c-activity in their Zea roots.

Krugelis finds no inhibition of the acid-phosphatase activity of young rat testis by colchicine. (unpub.)

Smith, '41, finds an acceleration of mart diastase, and no direct inhibition of invertase by colchicine.

Once again we can only say that no final conclusion is possible.

Although the main body of this paper contains all of the previous principal work on colchicine, the author is in the midst of some investigations which may yield another approach. That investigation is by no means complete: indeed it has barely started, and this paper is not to be regarded in any sense as a publication. It is intended rather as a systematization of the present situation, and as a contribution for the interest of those who have shown some solicitude for my efforts in this direction. Consequent by the remainder of this paper will be on a more speculative, hypothetical basis.

In the course of some routine cytological studies on c-mitosis in the Allium cepa root-tip, the author in March 1941 came across some indications of a gradient-of-suscepticiality to colonicine in the onion root tip. This was followed up by some work in the Spring of 1942 which confirmed this conception as rollows:

Onion bulbs were grown in the dark over tap-water for 3-4 days until roots 1-2 cm long appeared. Then a stated colonicine solution was substituted for the water, replaced every few hours. The root-tips were then cut off at stated times, fixed, and stained for cytological study. Counts were made of 8u longitudinal sections of the types of division figures present, and segregated into the groups: prophases, normal metaphases, anaphases, telephases and c-mitoses. Camera lucida sketches were made under low power, division tigures picked out, and then all of these were examined under high power, am the type and relative locality of each sketch marked. Charts I andIII are graphic representations of the numbers of each type of ligure in 2 sections with respect to time, at \$006% and .006% aqueous colonicine respectively. The sketches indicated very definitely that at these concentrations the effect was localized, and that furthermore, normal magnetic were always found

when present, apically to c-mitoses. Furthermore the line of demarcation was snifted basipttally at the higher concentration, although this line shifted very much more with time than in response to concentration difference. No very satisfactory analysis of the charts is yet forthcoming, and the charts are still too incomplete to be entirely significant so that are presented without comment.

There are at least two possibilities in the interpretation of the gradient, requiring experimental test. Because of differential absorption in the region of differentiation or elongations there may exist an artificial concentration gradient down the root tip. Or the gradient may be intrinsic in the cells. It the first interpretation survives test by cutting and culturing experiments, it will not be possible to use this approach. If the gradient is intrinsic, the results of attempts to extinguish or accentuate it would be most interesting. Such preliminary experiments with Pb, cyanide, a methylene blue indicate only that the balance of figure-types is upset by the accumulation of prophases or of vegetative cells, in accordance with the independent properties of these reagents. At this point one can only say that experiments are being planned and will shorely proceed.

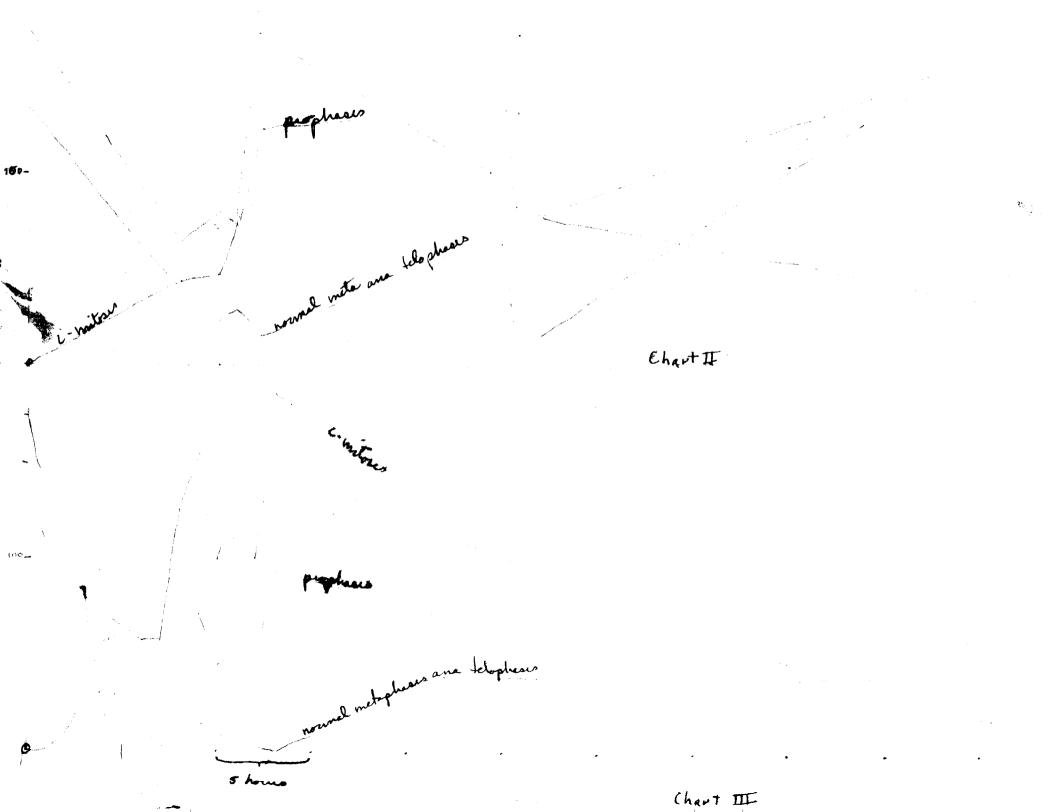
The authors attempts to measure dehydrogenase activity on whole tips was vitiated by the absorption of methylene blue by the cap and elongation regions, first, and then the meristem. When the entire tip was solored, it has the first to decolorize in the Thumberg vacuum, and this decolorization see seemed unaffected by the presence of coachicine. The conditions of the experiment demand repiticion.

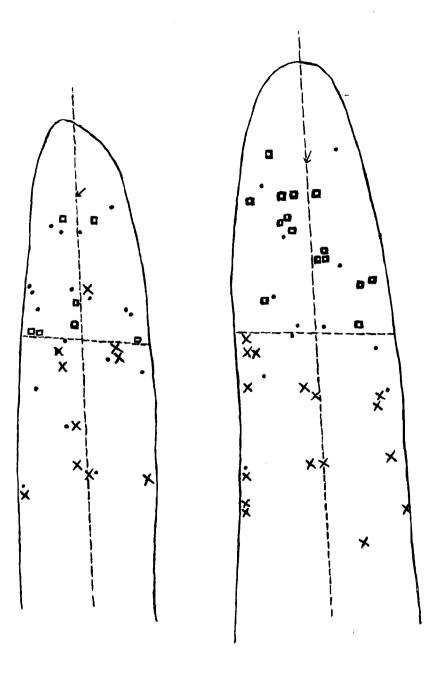
The attempt then to correlate collapse of spinale function with innipition of some port of metabolic activity then continues, but as yet is
quite unsuccessful. One last important consideration ought to be kept in
mind: the importance of distinguishing the intrinsic effects of colonicine
and those which occur through the mediation of the dessation of cell division

The substance of this report was presented orally at a Botany 124 Seminar, Columbia University, on April 24,1942, and in written form in a report to the instructor for that course, Dr. W.G. Whaley.

The companion-report to this: 'The Bicchemistry of Cell-Division' was prepared only as a packground for the study of colchience effects, and is incomplete to the extent that the colchience problem does not join on iv.

July 28,1942. Joshua Ledercerg


1086 East 180 Street


New York, N.Y.

6. BIBLIOGRAPHY

Certain papers were not obtainable at Columbia University or the Bot. G. Library except as abstracts. These are listed in the abstract journal.

```
Ancel & Lallemond
                       139
                              G.R. Soc Biol 130:
Beams & King
                       138
                              Biol Buil
                       1 40
                              Biol Bull
                       ' 40
                              J.C.C.P.
                       140
                              J.O.C.P.
Avery, Blakeslee..
                       137
                              A-J-Bet. J. Her.
                       1 39
Blakeslee
                              A.J.B.
                       139
Boas & Gistle
                              Protoplasma 55
Brock, Druckrey & Herken '39 Arch exp Path u Pharm
Brues & Cohen
                       136
                              Bioch J 30
                       140
Clark & Barnes
                              PSEBM 44
                       1 37
Clearkin
                              J Path & Bact 44
                       41
Dooley
                              Am Micr Sow Trans 60:105
                       1 40
Dermen
                              Bot Rev 6
                       <sup>1</sup> 38
                              PNAS
Eigsti
                       133
Funner & Breipohl
                              Arch expmPath u Pharm
                       139
Fyfe
                              Cambriage: Imp Bur P1 Br & Gen
                       138
Gal
                              B.S. Ch.Biol. 20:
                       '39-'41 Series in the CRSB
Gavaudan & Gavaudan
                       ' 40
Gosselin
                              C.R. Ac.Sc. 210:544
                       40
Guinochet
                              CRAS
                                     210:
                       128
Heilbrunn
                              The Colloid Chemistry of Protoplasm
                       139
Henry
                              The Plant Alkaloids
                                                     574-579 Churchill-Lon
Jacobson
                       125
                              CRSB 93
                       1 39
                              B.B.
Keppel & Dawsan
                       41
                              CCNY Honors Report II, III
Lein
                       1 42
                              CCNY Biol Rev May
                       138
                              Hereditas 24
Levan
                       139
                              Hereaitas 25:9
                       '39b
                              Hereditas 25:87
                       114
                              J.B.C. 17
Lillie
                       118
                              Am J Physica 45
                       133
Lorthiori
                              CRSB
                       136
Ludford
                              Arch exp Zellforsch 18:411
Mirov & Stockwell
                       139
                              J.H.
                       1 38
Nebel & Ruttle
                              J .H.
                       139
                              J.H.
O'Mara
                       1 37
                              PSEBM 36
Oughterson, et al
                       139
Pineus & Waddington
                              J.H.
                       ' 39
                              28
Patton & Nebel
                       138
Richards
                              J. Bact
                       141
                              Planta
Rosendani
                       138
                              Planta 28
Ruhland & Ramshorn
                       130
                              Props. and Uses of Drugs 340-41 Blakiston
Rushy, et al
                       1 59
                              Cytologia
Shimamura
                       41
                              OKL Ac Sc Proc 21:105
Smith
                       41
                              Cytologia
Wada
                       40
                              PSEBM
Walker & Youmanns
                       40
                              PSEBM 45
Wilbur
                       141
                                    Biol Abst '41:16214
Yamaha & Ueda
```


F195, 1 and 2.

Outline drawings of representative sections of onion root-tipe treated with threshold concentrations of colchieine.

The root agent is toward the top of the page
The brobamtines are the root axis, and the plane of
demarcation between mitores and e-mitores no pectively.
The small arrows are directed at the point of
apparent convergence of cell layers.

- . Indicates normal appearing prophase
- I indicates normal agreering metaphase, anaphase,
- x indicates c-mitosis

Drawn at table level at 50x with the aid of a camera lucida.

set captions in type.

Fig. 1 Alliumcepa.
.006% colchicine
3 hours

Fig. 2 Allium cepa .005% colchicine 15 h.